Abstract

In recent years, as the robot technology is developed, the researches on the artificial muscle actuator that enables robot to move dexterously like biological organ become active. Actuators are one of the key technologies underpinning robotics. Particularly breakthroughs of power-to-weight ratio or energy-density in actuator technology have significant impacts upon the design and the control of robotic systems. The widely used materials for artificial muscle are the shape memory alloy and electro-active polymer. These actuators have the higher energy density than the electromechanical actuators such as the electric motor. However, there are some drawbacks because these actuators have the hysteretic dynamic characteristics. In this paper, the segment control for reducing the hysteresis of SMA is proposed and the simulation of an anthropomorphic robotic hand is performed using ADAMS. A new approach to design and control of SMA actuators is presented. SMA wire is divided into many segments and their thermal states are controlled individually in a binary manner(ON/OFF). The basic experiment for evaluating the dynamic characteristics of SMA wire actuator is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.