Abstract

Abstract A new turbocharging system, named automatically variable intake exhaust injection timing (AVIEIT), is proposed. Its main purpose is to improve the performance of low-speed high torque operating conditions and improve the economy of high-speed operating conditions for high-speed supercharged intercooled diesel engines. The principle of the AVIEIT turbocharging system is presented. A control mechanism for the proposed AVIEIT system used for a truck diesel engine is introduced. An engine simulation code has been developed. In this code, a zero-dimensional in-cylinder combustion model, a one-dimensional finite volume method-total variation diminishing model for unsteady gas flow in the intake and exhaust manifolds, and a turbocharger model are used. The developed code is used to simulate the performances of diesel engines using the AVIEIT system. Simulations of a military use diesel engine “12V150” and a truck diesel engine “D6114” using the AVIEIT system have been performed. Simulation results show that the in-cylinder charge air amount of the diesel engine with the AVIEIT system is increased at low-speed high torque operating conditions, and the fuel economy is improved at high-speed operating conditions. In order to test the idea of the AVIEIT system, an experiment on a truck diesel engine D6114 equipped with an AVIEIT control mechanism has been finished. The experiment results show that the AVIEIT system can improve the economy of high-speed operating conditions. Both the simulation and experiment results suggest that the AVIEIT system has the potential to replace the waste-gate and variable geometry turbocharger turbocharging systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.