Abstract
Power semiconductors for automobiles were joined by high Pb soldering to joint properties at high temperatures during operations. However, this process is being replaced by low-temperature sintering. In the low-temperature sintering bonding method, Cu powder is low-cost and exhibits high-performance material and excellent bonding properties. In this study, the effect of high-temperature aging on Cu paste sintered joints and the failure mechanism of the shear test were investigated. Cu monomodal and bimodal pastes were manufactured, and electroless nickel immersion gold (ENIG) surface treatment was applied on the Cu chip side. In the ENIG-treated joints, a significant number of Kirkendall voids were observed at the interface under Au after 2,000 h at 200 °C, and Cu2O was also formed. This is attributed to the difference between the interdiffusion coefficients of Au and Cu, which decreases the shear strength of the junction and rapidly increases the electrical resistance. After the shear strength tests, the crack propagation pattern at the interface of the ENIG-treated joint was confirmed via cross-section scanning electron microscopy. Future studies on surface treatment are required to clarify the long-term stability of the joints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.