Abstract

This paper aims to present some new features of the experimental research in dynamics of a closed-loop actively controlled mechanical system with collocated PZT sensor and actuator and a proportional-derivative regulator. The evolution of active electrical power absorbed by the actuator is mainly used. A fraction of this power is converted into mechanical real power and delivered by the actuator to the mechanical system. This paper highlights the fact that derivative gain in the regulator produces a directly proportional synthetic damping (positive or negative) in the mechanical system, due to the fact that a directly proportional flow of active electrical power (negative or positive) absorbed by the actuator is generated. The paper proves that the active power flow evolution is very useful to describe the behavior of the actuator for some dynamic regimes (more useful than the magnitude of the electrical impedance).The research was done on a setup that consists of an aluminium cantilever beam equipped with two PZT collocated transducers – rectangular laminar design – closely glued by the rigidly fixed end of the beam. The feedback between sensor and actuator is provided by a regulator which produces a tunable phase difference between input and output (equivalent to a proportional-derivative feedback). The electrical current and the voltage generated by the regulator and applied to the actuator are used for finding the values of the active electrical power absorbed by the actuator, the magnitude of the electrical impedance and the values of some dynamic parameters of the cantilever (e.g. damping ratio, damped modal frequency, etc.) due to an external excitation of first bending mode. A computer assisted data acquisition system and some new data processing techniques are used for these purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.