Abstract
This investigation was performed to evaluate the acid resistance of lased enamel and dentin by Er,Cr:YSGG laser to artificial caries-like lesions by spectrophotometry, and the ultrastructure of lased areas was investigated by scanning electron microscopy (SEM) in vitro. In recent years, many studies have been performed to evaluate the effects of Er,Cr:YSGG laser on dental hard tissues. However, there have been only a few studies to determine if this laser is suitable for caries preventive treatments. An Er,Cr:YSGG laser was used to irradiate the enamel or dentin samples from 30 extracted human molars at 6 W (67.9 J/cm2) or 5 W (56.6 J/cm2) pulse energy, respectively, with or without water mist. Samples were subjected to 2 microl of 0.1 M lactic acid solution (pH 4.8) for 24 h at 36 degrees C. The parts per million (ppm) of calcium ion (Ca2+) dissolved in each solution was determined by atomic absorption spectrophotometery, and the morphological changes were investigated by SEM. The lowest mean Ca2+ ppm was recorded in the lased samples. SEM observation showed that the lased areas were melted and seemed to be thermally degenerated. After acid demineralization, the thermally degenerated enamel or dentin surfaces were almost unchanged. The results of this study suggested that Er,Cr:YSGG laser irradiation with and without water mist appears to be effective for increasing acid resistance.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.