Abstract

Two main factors for design of railway vehicles are stability and curving performance. Running performances, result from stiffness design of a primary suspension, between stability and curving are contrary to each other. The more longitudinal stiffness of a primary suspension stiff, the better straight performance is outstanding, however, curving performance is degenerated. Also, if the less longitudinal stiffness stiff, running performance has opposite characteristics. Curving performance of railway vehicles should be outstanding on small curved track which is in cities. If curving performance is improved, lateral contact force (i.e. flange contact force) of wheel and rail is decreased by improved spring so, wear and noise of wheels are decreased. Derailment risk from wheel and rail contact, of course, is decreased. Thus, it's important to design an axle spring of a primary suspension. The design of ensuring stability performance, of course, should be precede. An axle spring is designed using FEM tool which is ABAQUS also, rubber like material is modeled by Mooney-Rivlin model. Developed FE-axle spring model is analyzed and is produced also, this model is validated by test results of a load tester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.