Abstract

In this study, in order to protect the concrete layer from slab sinking cracks in the factory floor layer, four types of reinforcing materials with a notable waterproof performance are fixed at the bottom. Furthermore, short fibers mixed with concrete in order to evaluate the load transfer mechanism and residual stress retention ability are used. The change in flexural strength due to the waterproof reinforcement varied from about 10 to 48% depending on the type of reinforcing material, and the flexural strength of the specimen reinforced with Typar and Preprufe was demonstrated to be the best. Additionally, the increase in flexural strength due to the combination of the SF20 + Typar and MF2.8 + Preprufe specimens was remarkable. After the concrete matrix cracking, the toughness resulting from the fiber pull-out resistance and the increase in the reaction force of the waterproof reinforcement showed a marked improvement in all the test specimens. The test specimen reinforced with Typar demonstrated the best crack resistance regardless of the fiber type. The crack transfer mechanism in the concrete floor can be summarized in that the fiber pull-out resistance and the reaction force of the waterproof reinforcement immediately after cracking causes a reduction of the crack length (l) from the rapid load transfer, and as a result, the fiber bridging zone (lf) is widely protected. Therefore, it is determined that the residual stress rises, maintains, and slows, as the resistance of the fiber bridging in the cracked section and the effect of the waterproofing reinforcement layer is combined.

Highlights

  • Due to the development of the industry, the increase in the distribution volume and production of various goods has resulted in the new construction, extensions of buildings and the continued renovation of industrial facilities [1,2,3,4]

  • In the case of the bending test specimen, a 100 × 400 mm waterproofing material and a protective material were installed on the side of the 100 × 100 × 400 mm test mold, and finished by compacting it with fresh concrete mixed with Ordinary Plain Concrete (OPC), Steel Fiber (SF) 20, Micro PP Fiber (MF) 1.0, and MF

  • 5 and the the compressive due to the reinforcement of the fibers were all within the error range, The results of the compressive strength test for each specimen are shown in Table 5 and the compressive strengths due to the reinforcement of the fibers were all within the error range, indicating that there was no significant effect on the compressive strengths

Read more

Summary

Introduction

Due to the development of the industry, the increase in the distribution volume and production of various goods has resulted in the new construction, extensions of buildings and the continued renovation of industrial facilities (collectively called distribution centers and factories) [1,2,3,4]. The owners of such industrial facilities are required to complete the construction of durable buildings as soon as possible. Reducing the construction duration requires simplification and complexation of the main processes.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call