Abstract

Vacuum ultraviolet (VUV) emission diagnostics for studying differences of electron impact processes in hydrogen and deuterium plasmas are presented. The method is applied to study a filament driven multicusp arc discharge negative ion source by comparing the VUV-emission intensities of different emission bands and extracted currents of H−/D− ions and electrons. It was found that the ratio of coextracted electrons to extracted ions is four times higher for deuterium than for hydrogen. No significant differences of the VUV-spectra or volumetric rates of ionization, excitation, production of high vibrational states, and dissociation were found between the plasmas of the two isotopes. The volumetric rates of these electron impact processes are presented for both discharges. It is concluded that in the filament ion source, the observed difference of H−/D− production through dissociative electron attachment is due to different diffusion rates across the magnetic fields of the tandem-type discharge chamber rather than the production rate of ground state molecules at their vibrational levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.