Abstract

The atmosphere of Titan is a unique natural laboratory for the study of atmospheric evolution and photochemistry akin to that of the primitive Earth, with a wide array of complex molecules discovered through infrared and sub-mm spectroscopy. Here, we explore high resolution visible spectra of Titan (obtained with VLT-UVES) and retrieve an empirical high resolution list of methane absorption features at high resolution, (R=100.000) between 5250 Å and 6180 Å, for which no linelists are yet available. Furthermore, we search for the predicted, but previously undetected carbon trimer, C3, on the atmosphere of Titan, at its 4051 Å band. Our results are consistent with the presence of C3 at the upper atmosphere of Titan, with a column density of 1013 cm−2. This study of Titan’s atmosphere with high-resolution visible spectroscopy presents a unique opportunity to observe a planetary atmosphere where CH4 is the main visible molecular absorber, from which CH4 optical proprieties can be studied. It also showcases the use of a close planetary target to test new methods for chemical retrieval of minor atmospheric compounds, in preparation for upcoming studies of cold terrestrial exoplanet atmospheres.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call