Abstract

Purpose– With an increase in the amount of multilingual content on the World Wide Web, users are often striving to access information provided in a language of which they are non-native speakers. The purpose of this paper is to present a comprehensive study of user profile representation techniques and investigate their use in personalized cross-language information retrieval (CLIR) systems through the means of personalized query expansion.Design/methodology/approach– The user profiles consist of weighted terms computed by using frequency-based methods such as tf-idf and BM25, as well as various latent semantic models trained on monolingual documents and cross-lingual comparable documents. This paper also proposes an automatic evaluation method for comparing various user profile generation techniques and query expansion methods.Findings– Experimental results suggest that latent semantic-weighted user profile representation techniques are superior to frequency-based methods, and are particularly suitable for users with a sufficient amount of historical data. The study also confirmed that user profiles represented by latent semantic models trained on a cross-lingual level gained better performance than the models trained on a monolingual level.Originality/value– Previous studies on personalized information retrieval systems have primarily investigated user profiles and personalization strategies on a monolingual level. The effect of utilizing such monolingual profiles for personalized CLIR remains unclear. The current study fills the gap by a comprehensive study of user profile representation for personalized CLIR and a novel personalized CLIR evaluation methodology to ensure repeatable and controlled experiments can be conducted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.