Abstract
We investigate two-channel complex-valued filterbanks and wavelets that simultaneously have orthogonality and symmetry properties. First, the conditions for the filterbank to be orthogonal, symmetric, and regular (for generating smooth wavelets) are presented. Then, a complete and minimal lattice structure is developed, which enables a general design approach for filterbanks and wavelets with arbitrary length and arbitrary order of regularity. Finally, two integer implementation methods that preserve the perfect reconstruction property of the filterbank are proposed. Their performances are evaluated via experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.