Abstract
This paper advances a study of the transcritical expansion of carbon dioxide (R-744, CO 2) through adiabatic capillary tubes. The influence of both operating conditions (inlet and exit pressures, inlet temperature) and tube geometry (capillary diameter and tube length) on the CO 2 mass flow rate was experimentally evaluated using a purpose-built testing facility with a strict control of the measured variables. A dimensionless correlation to predict the refrigerant mass flow rate as a function of tube geometry and operating conditions was developed. In addition, a theoretical model was put forward based on the mass, energy and momentum conservation principles. The model results were compared with experimental data, when it was found that the model predicts 95% of the measured refrigerant mass flow rate within an error band of ±10%. The model was also employed to advance the knowledge about the transcritical carbon dioxide flow through adiabatic capillary tubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.