Abstract

In this paper, vane trailing-edge losses which occur in organic rankine cycle (ORC) turbines are investigated. Experiments are performed to study the influence of dense gas effects on trailing-edge loss in supersonic flows using a novel Ludwieg tube facility for the study of dense-gas flows. The data is also used to validate a computational fluid dynamics (CFD) flow solver. The computational simulations are then used to determine the contributions to loss from shocks and viscous effects which occur at the vane trailing edge. The results show that dense gas effects play a vital role in the structure of the trailing-edge flow, and control the extent of shock and viscous losses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call