Abstract

Many aspects of the interactions between cutting tools, workpiece material and the chips formed during machining that affect the wear and failure of the tool are not fully understood. The analysis of acoustic emission signals generated during machining has been proposed as a technique for studying both the fundamentals of the cutting process and tool wear and as a methodology for detecting tool wear and failure on line. A brief review of the theory of acoustic emission is presented. Acoustic emission data from reduced contact length machining experiments and tool flank wear tests are analyzed using distribution moments. The analysis shows that the skew and kurtosis of an assumed β distribution for the r.m.s. acoustic emission signal are sensitive to both the stick-slip transition for chip contact along the tool rake face and progressive tool wear on the flank of the cutting tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call