Abstract

TiMoN nano-multilayer hard coatings have been deposited using the closed field unbalanced magnetron sputter ion plating (CFUBMSIP) technique. In one set of experiments, standard DC power supplies were used on four magnetrons in the CFUBMSIP system (4DC magnetrons). The second set of experiments was also in the same magnetic field configuration of CFUBMSIP, but three magnetrons were as again powered with standard DC whilst one magnetron with Ti target was supplied by a high power impulse magnetron sputtering (HIPIMS) power generator (3DC+1HIPIMS magnetrons). Two elemental titanium sputtering targets and two of molybdenum were used to produce the TiMoN nano-multilayer coatings. Analysis of the coatings was carried out to investigate the differences in terms of properties, compositions and microstructures of the coatings deposited by these two sets of experiments. It was found that the coatings deposited by both sets of the experiments exhibited similar properties of high hardness, good adhesion and exceptional wear resistance, with a lower sliding friction than more commonly used hard coatings including TiN, CrN, TiAlN, CrTiAlN etc. Although the initial TiN coating as formed at the coating-substrate interface using the process of 3DC+1HIPIMS magnetrons appeared to show a less oriented microstructure in comparison with that of the coating produced by the process using 4DC magnetrons, the compositions and cross sectional microstructures of the bulk of the coatings did not show significant differences, as observed by the cross sectional Transmission Electron Microscopy microstructures of these two types of TiMoN coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.