Abstract

The paper addresses the crystallization behavior of homogeneous branched polyethylenes, where the branches cannot be incorporated within the lattice. The polymer was chosen to investigate the morphology achievable by polymers where the chains cannot extend, which is considered to be a requisite to minimize the surface free energy. Pressure−temperature conditions similar to those necessary to form extended chain crystals in linear polyethylenes are applied. In-situ wide-angle X-ray diffraction and Raman spectroscopy are used to follow the structural and conformational changes during crystallization. The hexagonal phase is not observed in these polymers unlike in linear polyethylene. However, crystallization at elevated pressures results in a structural organization of the interphase and the fold surface; this provides adjacent reentry, where the branches will also possess structural order. Crystallization of these components leads to the formation of an incompressible open-orthorhombic phase (a = 7.56 A, b...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.