Abstract
This work describes the application of two-dimensional finite element models with a cohesive zone to study quasi-static crack extension in functionally graded Yttria stabilized Zirconia (YSZ)-Bond Coat (BC) alloy (NiCoCrAlY) thermal barrier coatings (TBC). Crack growth under a single heating-cooling cycle simulating a laser thermal shock experiment is considered. The traction-separation relations for YSZ and BC alloy are coupled to yield a traction-separation relation for the individual layers of the graded TBC. Results from laser thermal shock experiments are then used for a systematic evaluation of the material properties in this traction-separation relation. The effective work of separation for YSZ-BC alloy composites, which is indicative of the material’s fracture toughness, is then computed. The model is then used to predict the surface thermal fracture response in a graded TBC having an architecture different from the coatings that were used to evaluate the cohesive properties. These model predictions are then compared with results from laser thermal shock experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.