Abstract

The pyrolysis of bromoethane under dilute atmosphere and quasi-atmospheric pressure was studied at temperatures from 600 to 975 K using a fused silica jet stirred reactor (JSR) and an alumina tubular reactor (TR). In the JSR, a complete conversion was observed at a residence time of 2 s, a temperature of 975 K and an inlet mole fraction of bromoethane of 0.01. In the TR, the full conversion was observed from 925 K. In both reactors, the following species were quantified: methane, ethylene, acetylene, ethane, 1,3-butadiene, vinylacetylene and vinyl bromide. A new detailed kinetic model was developed and gave a good prediction for both reactors of the global reactivity and the major products. Flow rate and sensitivity analyses have been performed to better understand the important reaction pathways during bromoethane pyrolysis. They showed, in contrast to previous studies, that the radical mechanism is far from being negligible and that the sole analysis of reaction products can be misleading as the radical mechanism mainly lead to ethylene and HBr which are also the two products from the molecular decomposition reaction of bromoethane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.