Abstract

Valence shell angle resolved photoelectron spectra of CH 3CN and CF 3CN have been recorded in the photon energy range 14–120 eV, thereby allowing asymmetry parameters and branching ratios to be derived. The carbon and nitrogen K-shell photoabsorption spectra of these two molecules exhibit features ascribed to shape resonantly enhanced transitions. Energy dependent variations observed in the asymmetry parameters and branching ratios provide evidence of shape resonances influencing the valence shell photoionisation dynamics. In addition to the main lines associated with single-hole states, complex satellite structure appears in the inner valence region of the photoelectron spectrum due to many-electron effects. The experimental spectra have been interpreted using previously reported ionisation energies and spectral intensities obtained from Green's function calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.