Abstract

The valence shell photoelectron spectra of uracil, 1-methyluracil and 6-methyluracil have been studied experimentally and theoretically. Synchrotron radiation has been used to record spectra at photon energies of 40 and 80 eV. Photoelectron angular distributions have been determined and these provide an experimental means of distinguishing between σ- and π-type orbitals. Vertical ionization energies and spectral intensities have been evaluated using the many-body Green’s function approach, thereby enabling theoretical photoelectron spectra to be derived. The calculated spectra display a satisfactory agreement with the experimental data and this has allowed most of the photoelectron bands to be assigned. Two of the outer-valence vertical ionization energies are similar to one another and the vibrational progressions associated with these transitions overlap strongly. Vibronic interaction between these states, induced through the excitation of out-of-plane vibrational modes, may lead to nonadiabatic effects. Preliminary theoretical investigation of this interaction has been performed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.