Abstract

A combined experimental and theoretical investigation has been performed to study the valence shell electronic structure and photoionisation dynamics of meta-dichlorobenzene and meta-bromochlorobenzene. Angle resolved photoelectron spectra of meta-dichlorobenzene have been recorded using synchrotron radiation in the photon energy range from close to threshold to 100eV. These have enabled photoelectron anisotropy parameters and branching ratios to be derived. The continuum multiple scattering approach has been employed to calculate photoionisation partial cross-sections and photoelectron angular distributions of the outer valence orbitals of meta-dichlorobenzene. A comparison between the corresponding experimental and theoretical results has demonstrated that ionisation from some of the orbitals is influenced by the Cooper minimum associated with the chlorine atom. Ionisation energies and spectral intensities evaluated with the third-order algebraic diagrammatic construction approximation for the one-particle Green’s function and the outer valence Green’s function approaches have allowed the features observed in the complete valence shell photoelectron spectra of meta-dichlorobenzene and meta-bromochlorobenzene to be interpreted. Many-body phenomena strongly influence ionisation from the inner valence orbitals and lead to the intensity associated with a particular orbital being redistributed amongst numerous satellites. High resolution photoelectron spectra have been recorded with HeI radiation. Vibrational structure has been observed in some of the photoelectron bands and tentative assignments have been proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call