Abstract

The tritium pathways and handling systems in 20 different conceptual magnetic and inertial confinement fusion reactor designs have been examined and compared. The primary objectives of this investigation were: to determine the effects, if any, of the plasma confinement scheme, reactor fueling method, and first-wall protection scheme on the design and relative complexity of the tritium handling systems; and to quantify the advantages and disadvantages of removing the tritium breeding function from the reactor. It is concluded that, from a tritium handling viewpoint, inertial confinement reactors with either gasprotected or magnetically protected first walls, pellet-fueled tandem mirrors, and reversed-field pinch reactors are preferred. On the other hand, the tritium handling problem is at a maximum in laser-driven reactors with either a wetted wall or lithium fall protection, tokamaks, standard mirrors, and fast-liner reactors. Theta pinches and neutral-beam-fueled tandem mirrors belong to an intermediate category. It is also concluded that transfer of the tritium breeding function from the reactor blanket to an external source does not result in significant benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.