Abstract

In this study, Hydroxycamptothecin (HCPT)-loaded micelles were formed in water by the self-assembly of folate (FA)-decorated amphiphilic block copolymer, methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL), and achieved a hydrodynamic diameter about of 132nm. HCPT release from the micelles exhibited no initial burst but showed a sustained release profile. The cytotoxicity and targeting ability of FA conjugated polymeric micelles was investigated by using methylthiazoletetrazolium (MTT) and fluorescence microscopy. We found that FA-conjugated micelles had superior cytotoxicity against HeLa cells compared to non-conjugated micelles, and that they exerted this effect by folate receptor (FR)-mediated endocytosis. In addition, HeLa cells were xenografted into nude mice and subjected to radiotherapy (RT) and/or HCPT-loaded micelle treatment. The antitumor efficacy was detected by analysis of tumor growth delay (TGD) and median survival time. Micro fluorine-18-deoxyglucose PET/computed tomography (18F-FDG PET/CT) was performed to assess early tumor response to HCPT-loaded micelles in combination with RT. Analysis of cell cycle redistribution, apoptosis and expression of histone H2AX phosphorylation (λ-H2AX) was used to evaluate the mechanism by which HCPT loaded micelles led to radiosensitization. Taken together, the results showed that HCPT-loaded FA decorated micelles efficiently sensitized xenografts in mice to RT, and induced G2/M phase arrest, apoptosis and expression of λ-H2AX.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call