Abstract

The principal goal of this paper is to gain further insight into the dynamical processes during the stratospheric major warming of February and early March 1979, with a special emphasis on the recovery stage. To achieve this goal, first the entire evolution of the warming event is numerically simulated using an isentropic vertical coordinate model. Then the results from the following complementary points of view are quantitatively analyzed: wave effects on the mean flow, potential enstrophy conversion and transport, and potential vorticity redistribution on a synoptic chart. There is an indication that wavenumber 1 during the recovery stage amplifies through a mechanism within the stratosphere and propagates downward. The simulated Eliassen‐Palm flux field shows that the amplified wave 1 is responsible for the mean flow acceleration in the recovery stage. It is therefore concluded that the in situ amplification mechanism for wave 1 plays a crucial role in the dynamics of the flow recovery. In order to examine the mechanism, detailed analyses of the simulated eddy potential enstrophy budget are performed. It is found that there is an ‘‘anticascade’’ of potential enstrophy in the recovery stage through which wave 1 amplifies in the midstratosphere. This result is consistent with a synoptic description of the event in terms of potential vorticity distribution on isentropic surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call