Abstract

This paper presents an investigation of the modeling of the process of pyrolytic laser-induced chemical vapor deposition (LCVD) applied to study the Soret effect. LCVD is a thermally activated process characterized by strongly coupled mass and energy transport phenomena, together with chemical reactions, which are difficult to investigate experimentally. A physical and numerical model based on a commercial computational fluid dynamics package is developed and used to simulate a reactor operating at conditions of room temperature and pressure. The proposed numerical methodology will allow us to assess and analyze the effect of various factors controlling the process, and in particular the Soret effect. This numerical model is validated by comparison with the measured growth rate of the fiber. While several studies have proposed simulations of the LCVD process, this is among the first attempts at including the Soret effect in the numerical modeling at the micro-scale level. It is expected that the fundamental insights thus obtained will guide experimental investigations which can be applied to establish reactor design and process control guidelines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call