Abstract

This study determines the relationship between retention and endurance reliability for a HfOx-based resistive random access memory (ReRAM). A TiN (15 nm) / HfOx (6 nm) / Ti (10 nm) / TiN (40 nm) stacked structure is fabricated and tested to verify its basic characteristics and reliability. The high resistance states (HRS) retention behavior is characterized and is found to degrade over 100x on the endured bits because there is a sequential high temperature procedure. The degradation is reduced slightly to a ~30x drop for the endured devices with one single refresh cycle. During the endurance and retention test procedures, the HRS resistance decreases because neutral oxygen vacancy filaments grow and this cannot be reversed. The I-V characteristics for endured devices are also determined. The results show that isothermal treatment causes a gradual SET and RESET process with multiple feasible states. The thermally induced filament degradation model (isolated filament vs. continuous filament) is verified by the relationship between retention and endurance reliability. Design guidance is recommended for an improvement in ReRAM reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.