Abstract

The environmental crisis and the safeguarding of the population's health has led to research into different ways of mitigating harmful gases. Among the emissions that the wood industry has sought to reduce are those of formaldehyde, which is why new green adhesive methods for wood panels have been investigated in recent years. In this research, particleboard with two bio-based wood adhesive (PB-bbwa) formulations. The first PB-bbwa formulation, based on proteins obtained from compounds from the alcoholic beverage industry, and the second PB-bbwa formulation, based on proteins from a mixture of compounds from the alcoholic beverage and food industries, were manufactured and tested to evaluate the physical–mechanical, thermal and formaldehyde emission properties of untreated and UV-treated formulations at a laboratory scale. The results of the physical properties obtained in the PB-bbwa were similar or even better than those of the control PB. Additionally, PB-bbwas improve on the control PB sample’s Janka hardness by least 28%, and a decrease in thermal conductivity in the edgewise position and formaldehyde emissions by 12% and 88%, respectively, in comparison to the control PB. The tests performed evidenced that PB-bbwas showed comparable performance against the control PB made with urea-formaldehyde and satisfied international standard requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call