Abstract

The earliest mention of the significance of porosity in the performance of activated carbons is generally attributed to the French chemist Antoine-Alexandre-Brutus Bussy who in a 1822 publication suggested that porosity was important to the adsorptive properties of activated carbons. Since then a lot of research has gone into elucidating the nature of porosity of activated carbons, its development and measurement. In particular, a great deal of research has been spent on understanding factors that affect the development of porosity and how to model the porosity in terms of these factors. Similarly, much effort has gone into identifying accurate methods and procedures for characterizing activated carbons in general and particularly its pore structure. The continued interest in these research is because of the continued use and importance of activated carbons in industry and an unrelenting pursuit to improve on its performance. Characterization of porosity is often done indirectly by measurement of secondary data from which the requisite pore parameters are estimated. But direct methods also exist for characterizing the pore structure of activated carbons. Methods such as optical microscopy and scanning electron microscopy (SEM), in view of their ability to directly view the micro-structure of activated carbons have demonstrated enormous potential for use in the study and characterization of activated carbons [ Manocha et al., 2010; Lazslo et al., 2009; Achaw & Afrane, 2008]. However, this latter approach has only been applied in a very limited capacity in the past. Rather, industry and researchers alike continue to rely on the indirect methods to determine and quantify porosity in activated carbons. The indirect methods calculate activated carbon characteristics from measurement of other parameters that are generally thought to relate to the properties of interest. Adsorption measurements and related mathematical models wherein information regarding the pore structure of an activated carbon is determined are the most commonly used amongst the indirect methods. Porosity measurements using this approach extracts such pore characteristics as pore volume, surface area, pore size distribution and average pore diameter based on mathematical models of the adsorption process, information on the adsorbate and an adsorption isotherm. Besides adsorption measurements, several other indirect methods also exist to estimate the pore characteristics of activated carbons. Among these are immersion calorimetry, small angle scattering of X-rays (SAXS), small angle scattering of neutrons (SANS), and mercury porosimetry[Rigby & Edler, 2002; Stoeckli et al, 2002; Daley et. al., 1996].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call