Abstract

ABSTRACTComplex process of turbulent mixing in Persian Gulf that is a semi-closed sea makes it a good media to test the performance of different turbulence schemes. In this research, we used the 3D ocean model COHERENS (COupled Hydrodynamical Ecological model for REgioNal Shelf seas) for the Persian Gulf with the open boundary in the Hormuz Strait. Of the turbulence schemes for the vertical diffusion available in the COHERENS, we tested four models to investigate the hydrodynamic characteristics of the Persian Gulf. The results show that all of the schemes presented the sea surface salinity (SSS) distribution rather accurately but the k-l and flow-dependent models results have better agreements with observations. The most noticeable difference between the results of four schemes is the differences found in the simulation of turbulent parameters. The turbulent closure schemes generally provide better results, but the algebraic schemes show turbulent parameters far from reality and they do not show substantial changes with time. Generally, the vertical structures of turbulence in the water basins and parameterization of turbulence in water column is very sensitive to the selection of the type of the turbulence scheme. However, large-scale structures that take place within the inflow and outflow area are approximately quasi-horizontal, and the vertical small-scale turbulence does not affect them as much. As a result, they show less sensitivity to the performance of various turbulence schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.