Abstract
The mathematical problem of inverting the operator [Formula: see text] as it arises in the path-integral quantization of an Abelian gauge theory, such as quantum electrodynamics, when no gauge-fixing Lagrangian field density is included, is studied in this article.Making use of the fact that the Schwinger source functions, which are introduced for the purpose of generating Green's functions, are free of divergence, a result that follows from the conversion of the exponentiated action into a Gaussian form, the apparently noninvertible partial differential equation, [Formula: see text], can, by the addition and subsequent subtraction of terms containing the divergence of the source function, be cast into a form that does possess a Green's function solution. The gauge-field propagator is the same as that obtained by the conventional technique, which involves gauge fixing when the gauge parameter, α, is set equal to one.Such an analysis suggests also that, provided the effect of fictitious particles that propagate only in closed loops are included for the study of Green's functions in non-Abelian gauge theories in Landau-type gauges, then, in quantizing either Abelian gauge theories or non-Abelian gauge theories in this generic kind of gauge, it is not necessary to add an explicit gauge-fixing term to the bilinear part of the gauge-field action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.