Abstract

An optical and electron microscopic study has been made of three monodisperse n-alkanes crystallising as extended-chain lamellae. All showed similar morphologies at the same supercooling and the same progressive changes of texture with crystallization temperature. This is, with increasing supercooling, from a morphology composed essentially of individual lamellae arranged in parallel stacks and radiating from common nuclei through coarse, somewhat branched microstructures whose parallel stacks diverge, to finer, more-branched pseudo-spherulitic textures. Quenched, once-folded, C246 shows a random spherulitic texture with a dominant/subsidiary microstructure as for polymeric systems. The kinetics of extended-chain growth increase linearly with supercooling, as predicted by Hoffman, except for a local dip at the onset of lamellar branching. This new phenomenon occurs within one quantized state of lamellar thickness in contrast to ‘self-poisoning’ when once-folded forms give way to extended-chain crystallization. When dominant lamellae are no longer parallel but diverge, their mutual splaying angles increase with supercooling for all the three n-alkanes studied. The values are less, for the same supercooling, for the longer homologues with their thicker lamellae. This behaviour is as expected of transient ciliation due to the excess of molecular length over that of the secondary nucleus and thereby reinforces previous evidence demonstrating the responsibility of ciliation for spherulitic development in polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.