Abstract

Gestational diabetes mellitus (GDM) remains incompletely understood and increases the risk of developing Diabetes mellitus type 2 (DM2). Metabolomics provides insights etiology and pathogenesis of disease and discovery biomarkers for accurate detection. Nuclear magnetic resonance (NMR) spectroscopy is a key platform defining metabolic signatures in intact serum/plasma. In the present study, we used NMR-based analysis of macromolecules free-serum to accurately characterize the altered metabolic pathways of GDM and assessing their similarities to DM2. Our findings could contribute to the understanding of the pathophysiology of GDM and help in the identification of metabolomic markers of the disease. Sixty-two women with GDM matched with seventy-seven women without GDM (control group). 1H NMR serum spectra were acquired on an 11.7 T Bruker Avance DRX NMR spectrometer. We identified 55 metabolites in both groups, 25 of which were significantly altered in the GDM group. GDM group showed elevated levels of ketone bodies, 2-hydroxybutyrate and of some metabolic intermediates of branched-chain amino acids (BCAAs) and significantly lower levels of metabolites of one-carbon metabolism, energy production, purine metabolism, certain amino acids, 3-methyl-2-oxovalerate, ornithine, 2-aminobutyrate, taurine and trimethylamine N-oxide. Metabolic pathways affected in GDM were beta-oxidation, ketone bodies metabolism, one-carbon metabolism, arginine and ornithine metabolism likewise in DM2, whereas BCAAs catabolism and aromatic amino acids metabolism were affected, but otherwise than in DM2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.