Abstract

The flattening at the low energy end of the hard X-ray (HXR) photon spectrum of solar flares was generally thought to be due to a cutoff of nonthermal electrons in flares. However, some authors have suggested that inverse Compton scattering (i.e., the albedo effect) or certain other reaction of flare photons with the lower atmosphere can also lead to the flattening. This paper adopts the method of deriving the cutoff proposed by Gan et al. [12–14], and makes a statistical analysis on 100 flares observed by the satellite Ramaty High Energy Solar Spectroscopy Imager (RHESSI) in 2002–2005. We found that after the albedo correction, the HXR photon spectra of 18 flares can be fitted with single powerlaw spectra, and those of 80 flares, with double power-law spectra. Besides, 21 flares can be directly interpreted with a single power-law electron spectrum plus a low energy cutoff. The range of the low energy cutoff is 20–50 keV and the mean value is approximately 30 keV. Some other possible interpretations are also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.