Abstract

The permeability of the Antarctic polar vortex is investigated in late austral winter and spring by comparing isentropic and three‐dimensional (3‐D) trajectories. Trajectory computations were performed with the help of the Royal Dutch Meteorological Institute (KNMI) trajectory model, using data from the European Centre for Medium‐Range Weather Forecasts (ECMWF) from August to November 1998. Large numbers of air parcels were initially released inside and outside the polar vortex on the 350, 450, and 550 K isentropic surfaces. They were integrated 4 months forward in time in an isentropic mode, as well as in a 3‐D mode that uses all three wind components from the ECMWF and takes into account diabatic heating and cooling effects. For the isentropic trajectory calculations, very little transport (0.37%/week) was found for August and September, while October and November gave somewhat higher transport rates (1.95%/week). The 3‐D trajectory calculations for October gave much more exchange between the vortex and midlatitudes than the isentropic ones owing to a significant number of parcels that descended inside the vortex. Descent rates were calculated for 350 K (October), 450 K (August–October) and 550 K (October). Overall, the results show that 3‐D trajectories will provide more accurate leakage rates than the isentropic ones. Also, despite the large‐scale mixing in the polar vortex or in midlatitudes, little ozone‐depleted air leaks from the ozone hole into the midlatitude stratosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.