Abstract

The environment of the biotin binding site on avidin was investigated by determining the fluorescence enhancement of a series of fluorescent probes that are anilinonaphthalene sulfonic acid derivatives. Of the compounds tested, 2-anilinonaphthalene-6-sulfonic acid (2,6-ANS) exhibited the greatest enhancement under the conditions used (which would reflect both molar fluorescence enhancement and binding affinity) and exhibited more than 95% reversal upon addition of biotin. Thus, 2,6-ANS was chosen for more detailed characterization of the interaction with avidin. Only a single class of binding sites for 2,6-ANS was identified; the mean value for the K d was 203 ± 16 μ M ( X dash ± 1 S.D.) , and the molar ratio of 2,6-ANS binding sites to biotin binding sites was approx. 1. These results provide evidence that the biotin binding site and the 2,6-ANS binding site are at least partially overlapping, but the possibility that the probe binding site is altered by a conformational change induced by biotin binding cannot be excluded. At excitation = 328 nm and emission = 408 nm, the molar fluorescence of the bound probe was 6.8 ± 1.0 μM −1 and that of the free probe was 0.061 ± 0.008 μM −1 giving an enhancement ratio (molar fluorescence of bound probe/molar fluorescence of free probe) of 111 ± 22. Upon binding, the wavelength of maximum fluorescence decreases. These findings also provide evidence that the fluorescence enhancement associated with the interaction of 2,6-ANS and avidin reflects the environment of the biotin binding site. The Kosower's Z factor, an empirical index of apolarity, was 82.1 for the 2,6-ANS binding site on avidin. This value reflects a degree of apolarity that is similar to apolar environments observed for substrate binding sites on several enzymes; although not the dominant factor, this environment may contribute to the strong binding of biotin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.