Abstract

A roadside guardrail system is anchored in gravel beside a roadway to eliminate the risk of fatal accidents during off-road crashes and collisions with hazardous roadside objects. The desired safety behaviour is ensured not only by the guardrail structure itself, but also by the interaction between the gravel and the guardrail post. The interaction of gravel with a Sigma-post of a standard Swedish guardrail was studied in experiments and numerical analysis. The aim was to measure the strength of the single post embedded in gravel and use the data to validate a computer model for the investigation of the soil–post interaction. A quasi-static and dynamic test series were designed and carried out. Two corridors were formed by the test data for the quasi-static and dynamic loading conditions, respectively. A parametric study was subsequently conducted to investigate the influence of the gravel stiffness on the soil–post interaction through computer simulations using LS-DYNA. The numerical results showed that the LS-DYNA soil and concrete model and the Cowper–Symonds steel model effectively captured the soil–post interaction since the calculated strength of the post agreed with the corridors of the test data. The input parameters for the soil and concrete material model were recommended for roadside gravel in crash analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.