Abstract
An in-depth photoionization study of the inner-valence electrons in HCl and DCl has been performed using synchrotron radiation. A series of photoelectron spectra of HCl were obtained at a resolution of 23 meV over the binding energy range 25–30.5 eV at various excitation energies and at two different electron collection angles relative to the plane of polarization of the undulator radiation. In addition, photoelectron spectra of DCl were recorded at two different excitation energies. These spectra were compared directly with the threshold photoelectron spectra of HCl and DCl that were recorded previously under similar resolution conditions (∼30 meV). This comparative study reveals new information on the nature of the numerous band systems observed in this binding energy region. In addition, we present the experimental confirmation of the theoretical prediction given by Andersson et al (2001 Phys. Rev. A 65 012705) that a vibrational progression showing interference structure would appear in the main inner-valence ionization band in the photoelectron spectrum of DCl at a resolution of 10 meV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.