Abstract

The effect of hydrophobicity on the adsorption of aromatics on metal-free activated carbons was studied. Adsorption isotherms for phenol, aniline, benzene, and xylene were generated in cyclohexane and heptane media, using seven carbons with different surface heterogeneity. The hydrophobicity of these carbons was probed using flow microcalorimetry (FMC). Surface polarity and solvent and adsorbate hydrophobicity were found to influence the adsorption capacity. For adsorbates that do not form hydrogen bonds with oxygen on the carbon surface, higher surface acidity lowers adsorption capacity due to increased polarity. In contrast, for adsorbates that can form hydrogen bonds with surface oxygen, the capacity is enhanced at higher surface acidities. A higher solvent hydrophobicity was found to decrease capacity for all the aromatic adsorbates studied, except at high surface polarity, where the effect of the solvent was found to be minimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.