Abstract
A well-characterized Re-MoOx/TiO2 catalyst was used to investigate the reaction sequence involved during the hydrodeoxygenation of anisole in a batch reactor by varying the initial anisole concentration in the reactant mixture (0.182–0.382molL−1 corresponding to 2.6–5.4wt.%), the reaction temperature (250–325°C) and hydrogen pressure (30–60bar). The effects of these process variables on product selectivity, calculated at 10% anisole conversion, and reaction rate, estimated from the initial slope of anisole conversion vs. time, were discussed. The initial reaction rate was observed to increase to a maximum at anisole concentration of 0.282molL−1 and then decrease at higher concentrations. Mathematical modeling of the proposed reaction network revealed that the decreased activity at higher anisole concentration is related to diminished ability to cleave CO bonds on phenol and cresols, probably due to increased surface coverage by the reactant on the oxophilic sites on the catalyst which limits access to surface reactive hydrogen for transformation. In regards to the influence of reaction temperature, high temperature favors the formation of cresols at the expense of benzene which was confirmed by the estimated apparent activation energy of the different pathways. On the other hand, the observed strong dependence of benzene/phenol ratio on H2 pressure is attributed to increased availability of surface reactive hydrogen surface to aid in oxygen removal. Results from this study and the literature indicates that CO bond breaking is preceded by either protonation of oxygen on anisole or by partial hydrogenation of the aromatic ring to lower the CO scission barrier. Analysis of the conversion of intermediate compounds confirmed the reaction sequence and preferences during anisole HDO on Re-MoOx/TiO2 catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.