Abstract

A study of the hot salt corrosion behavior of three nickel-based single-crystal superalloys at 900 °C was conducted. We discovered that the corrosion layer on each alloy was distinctly enriched with Mo, Ni, S, and O, primarily comprising sulfides and oxides. Notably, variations in oxygen distribution across the alloys revealed that the elemental composition plays a pivotal role in their corrosion resistance. These insights not only advance our understanding of the mechanisms driving thermal corrosion in nickel-based single-crystal superalloys but also lay the groundwork for designing alloys with enhanced durability tailored to high-temperature applications. This research marks a significant step toward the optimal design and utilization of superalloys in sectors demanding exceptional material stability under thermal stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call