Abstract
We study the electronic structure of the ground state of the manganese dimer using the state-averaged complete active space self-consistent field method, followed by second-order quasidegenerate perturbation theory. Overall potential energy curves are calculated for the 1Sigmag+, 11Sigmau+, and 11Piu states, which are candidates for the ground state. Of these states, the 1Sigmag+ state has the lowest energy and we therefore identify it as the ground state. We find values of 3.29 A, 0.14 eV, and 53.46 cm(-1) for the bond length, dissociation energy, and vibrational frequency, in good agreement with the observed values of 3.4 A, 0.1 eV, and 68.1 cm(-1) in rare-gas matrices. These values show that the manganese dimer is a van der Waals molecule with antiferromagnetic coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.