Abstract

Ground-state properties are evaluated for the finite nucleus 4He starting from realistic nucleon–nucleon interactions within the framework of the Green’s function approach. For the sake of comparison, the same calculations are performed using the Brueckner–Hartree–Fock approximation. For that purpose four high-quality modern nucleon–nucleon interactions represented in momentum space are employed: the Argonne V18, CD-Bonn, Bonn A and N 3LO potentials. In these potentials, the effects of charge dependence are taken into account. Additional binding energy is obtained from the inclusion of the hole–hole scattering term within the framework of the Green function approach. It has been shown that the Green function results agree well with the results obtained by accurate methods for few-nucleon systems such as the Faddeev–Yakubovsky calculation. In this study, a comparison of the calculated ground-state energies, obtained by using the Green function approach and different nucleon–nucleon potentials, with experimental values is carried out. The results show good agreement between the calculated values and the experimental ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.