Abstract

The seasonal sea-ice cover of the combined Bering and Okhotsk Seas at the time of maximum ice extent is almost 2 × 106 km2 and exceeds that of any other seasonal sea-ice zone in the Northern Hemisphere. Although both seas are relatively shallow bodies of water overlying continental shelf regions, there are important geographical differences. The Sea of Okhotsk is almost totally enclosed, being bounded to the north and west by Siberia and Sakhalin Island, and to the east by Kamchatka Peninsula. In contrast, the Bering Sea is the third-largest semi-enclosed sea in the world, with a surface area of 2.3 × 106 km2, and is bounded to the west by Kamchatka Peninsula, to the east by the Alaskan coast, and to the south by the Aleutian Islands arc.While the relationship between the regional oceanography and meteorology and the sea-ice covers of both the Bering Sea and Sea of Okhotsk have been studied individually, relatively little attention has been given to the occasional out-of-phase relationship between the fluctuations in the sea-ice extent of these two large seas. In this study, we present 3 day averaged sea-ice extent data obtained from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) for the four winters for which ESMR-5 data were available, 1973 through 1976, and document those periods for which there is an out-of-phase relationship in the fluctuations of the ice cover between the Bering Sea and the Sea of Okhotsk. Further, mean sea-level pressure data are also analyzed and compared with the time series of sea-ice extent data to provide a basis for determining possible associations between the episodes of out-of-phase fluctuations and atmospheric circulation patterns.Previous work by Campbell and others (1981) using sea-ice concentrations also derived from ESMR-5 data noted this out-of-phase relationship between the two ice packs in 1973 and 1976. The authors commented that the out-of-phase relationship is “... surprising as these are adjacent seas, and one would assume that they had similar meteorologic environments”. We argue here that the out-of-phase relationship is consistent with large-scale atmospheric circulation patterns, since the two seas span a range of longitude of about 60°, corresponding to a half wavelength of a zonal wave-number 3, and hence are quite susceptible to changes in the amplitude and phase of large-scale atmospheric waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call