Abstract
Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline cytidine at 295 K and high pressures by evaluating the logarithmic derivative of the vibrational frequency ω with respect to pressure P: . Crystalline samples of molecular materials have strong intramolecular bonds and weak intermolecular bonds. This hierarchy of bonding strengths causes the vibrational optical modes localized within a molecular unit (“internal” modes) to be relatively high in frequency while the modes in which the molecular units vibrate against each other (“external” modes) have relatively low frequencies. The value of the logarithmic derivative is a useful diagnostic probe of the nature of the eigenvector of the vibrational modes because stretching modes (which are predominantly internal to the molecule) have low logarithmic derivatives while external modes have higher logarithmic derivatives. In crystalline cytidine, the modes at 85.8, 101.4, and 110.6 cm−1 are external in which the molecules of the unit cell vibrate against each other in either translational or librational motions (or some linear combination thereof). All of the modes above 320 cm−1 are predominantly internal stretching modes. The remaining modes below 320 cm−1 include external modes and internal modes, mostly involving either torsional or bending motions of groups of atoms within a molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.