Abstract

The influence of sodium halide electrolytes on aerosols generated from the Aeroneb Pro vibrating mesh nebulizer and the Sidestream air-jet nebulizer has been evaluated. Fluids with a range of concentrations of Na halides (i.e. NaF, NaCl, NaBr and NaI) were used as nebulizer solutions and their effect on aerosol properties such as total aerosol output, fine particle fraction (FPF), volume median diameter (VMD) and predicted regional airway deposition were investigated. For both nebulizers, the inclusion of electrolyte significantly enhanced the aerosol properties compared with HPLC grade (deionized) water. Aerosol output, FPF and aerosol fraction less than 2.15 μm were directly proportional to electrolyte concentration. Furthermore, the proportion of aerosols that are likely to deposit in the oropharyngeal region, and the VMD of the droplets were inversely related to the electrolyte concentration for both nebulizers. In general, the inclusion of electrolytes had a greater impact on the aerosol properties of the vibrating-mesh nebulizer. In the Aeroneb Pro, NaI 2.0% (w/v) was the optimum solution as it generated the highest aerosol output, FPF and output fraction below 2.15 μm with the lowest VMD and minimal predicted oropharyngeal deposition. This was attributed to the polarizing ability of iodide ions present in the largest quantity at the air-water interface. This study has shown that the Aeroneb Pro vibrating-mesh device demonstrated greatly enhanced aerosol properties when halides were included in the nebulizer solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.