Abstract

Carbonate sediments are often regarded as problematic in geotechnical engineering due to the high variability of their properties. Understanding and quantifying this variability will become increasingly critical in the years ahead, notably with respect to upcoming developments in offshore renewable energy, for which limited in-situ data are typically available to characterise large areas. Here, six intervals from the North West Shelf of Australia, each composed of similar carbonate grains but accumulated in different environments, are investigated to better understand how the post-depositional cementation, alteration and dissolution of sediments, known as diagenesis, impact their geotechnical properties. Intervals are primarily affected by mineralogy-driven meteoric diagenesis, comprising in-situ dissolution of metastable grains and subsequent precipitation of cement that occurred when the shelf was exposed during lower sea-levels, and by marine diagenesis. In both cases, increased diagenesis results in a higher cement-to-solid ratio and compressive strength. However, while marine diagenesis is associated with a reduction in void ratio, this is not initially observed with mineralogy-driven meteoric diagenesis. Additionally, for a similar cement-to-solid ratio, microcrystalline cement results in higher compressive strength than sparite cement. The data further reveal that the level of meteoric cementation and the compressive strength increase as a function of the duration of exposure and of the regional climate, along with a reduction of the specific gravity related to the replacement of aragonite by calcite. However, increased meteoric diagenesis also leads to the formation of macro-scale heterogeneities such as calcrete layers and karsts that can affect the holistic geotechnical behaviour of such deposits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.