Abstract

ABSTRACTThe dynamic impact response of IN 718 and ATI 718Plus®, in both the solution heat treated and age-hardened conditions, were investigated at different deformation temperatures and strain rates using a direct impact Hopkinson pressure bar. Analyses of the results provide a vital but previously not reported information that the ATI 718Plus® offers a higher resistance to damage during high strain rate ballistic impact deformation compared to the most widely used Iron-nickel based superalloy, Inconel 718. ATI 718Plus® showed higher strain hardening and strain rate sensitivity, in both heat treatment conditions, than IN 718. The difference in the deformation behaviour of both alloys, in the annealed condition, is attributable to the compositional modification in ATI 718Plus® which has been reported to lower its stacking fault energy and increases the tendency for deformation twinning. However, in the age-hardened condition, the difference is believed to be related to the disparity in the operative strengthening mechanism, of the precipitates present in both alloys. Furthermore, a higher susceptibility to strain location and the formation of adiabatic shear band, in aged IN 718, is attributable to the stronger temperature-softening characteristics observed in the alloy and to the limited strain hardening tendency under dynamic impact loading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call