Abstract
Speaker clustering is a crucial step for speaker diarization. The short duration of speech segments in telephone speech dialogue and the absence of prior information on the number of clusters dramatically increase the difficulty of this problem in diarizing spontaneous telephone speech conversations. We propose a simple iterative Mean Shift algorithm based on the cosine distance to perform speaker clustering under these conditions. Two variants of the cosine distance Mean Shift are compared in an exhaustive practical study. We report state of the art results as measured by the Diarization Error Rate and the Number of Detected Speakers on the LDC CallHome telephone corpus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.