Abstract
The aromaticity of the rings of thiophene, pyrrole, furan, and benzene annelated cyclooctatetraene (COT) derivatives and of their double charged ions was studied using the graph-theoretical theory of aromaticity. On the basis of topological resonance energy, it was found that the global aromaticity is dependent upon on the arrangement of heteroatoms in the given molecule. Relative stability of these molecules when in different charged states can been explained in terms of the topological charge stabilization rule. We expect that fusing the COT ring with an increasing number of aromatic rings will lead to an increase in the aromaticity of the molecule. According to the bond resonance energy (BRE) and circuit resonance energy (CRE) indices, local antiaromaticity of the COT ring is weakened as the number of fused rings increases, and these changes play a significant role in the global aromaticity of the molecule. For some compounds, our BRE and CRE indices do not predict the same order of magnitude of the local aromatic character of certain rings that the nucleus independent chemical shift (NICS(0) and (NICS(1)) methods predict. Finally, for the available compounds, correlations between the diatropic and paratropic chemical shifts of the protons and our ring current results were analyzed and good agreement was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.