Abstract

In this study, we investigated the interactions between titanium dioxide (nTiO2) and zinc oxide (nZnO) nanoparticles and polyethylene microplastics (MPs) with respect to their adsorption and subsequent desorption in aquatic media. Adsorption kinetic models revealed rapid adsorption of nZnO compared to nTiO2, while nTiO2 was adsorbed to a greater extent – four times more nTiO2 (67%) was adsorbed on MPs than nZnO (16%). The low adsorption of nZnO can be explained by the partial dissolution of zinc from nZnO in the form of Zn(II) and/or Zn(II) aqua-hydroxo complexes (e.g. [Zn(OH)]+, [Zn(OH)3]−, [Zn(OH)4]2−), which were not adsorbed on MPs. Adsorption isotherm models indicated that the adsorption process is controlled by physisorption for both nTiO2 and nZnO. The desorption of nTiO2 was low (up to 27%) and not pH dependent, and only nanoparticles were desorbed from the MPs surface. On the other hand, the desorption of nZnO was pH dependent; at a slightly acidic pH (pH = 6), 89% of the adsorbed zinc was desorbed from the MPs surface and the majority were in the form of nanoparticles; at a slightly alkaline pH (pH = 8.3), 72% of the zinc was desorbed, but the majority were in the soluble form of Zn(II) and/or Zn(II) aqua-hydroxo complexes. These results demonstrated the complexity and variability of interactions between MPs and metal engineered nanoparticles and contribute to a better understanding of their fate in the aquatic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call